If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2-8x=0
a = 32; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·32·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*32}=\frac{0}{64} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*32}=\frac{16}{64} =1/4 $
| 4.9x^2-23x+12=0 | | -86=2(5x-5)-6 | | 2(x+3)+x=3x+5 | | 5n+3-n+5=40 | | -8n+14+10n=3 | | 112=4(5x+8) | | -11(x-2)+8x=-8 | | 13x-27=90 | | 124=4(7-8b) | | 7(1+6x)=301 | | -8n+-4=-2+n+-6+-8n | | (x-3)3=8 | | 36x^2+12x+1=4 | | 327=7(8b-1)-2 | | 14x-11=101 | | 5x+25^2=x | | m=(-15)=62 | | 2(5x+4)-11=4x+3(2x-1 | | c/1+3=4 | | 8b-6=-9b+11 | | -5x+3=6-(x-5) | | 8(x-10)=9(x-10) | | 8b+-6=-9b+11 | | (6z-108)=180 | | 64+3x=11x+64 | | 4x+7x=4° | | 4x+7x=4* | | .03(4+x)=4.5 | | a=-7a+4 | | 4x=-86 | | 34=6(u+3)-8u | | x-9=-88 |